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Abstract 

In order for the brain to perceive sound, mechanical sound waves must be converted to electrical 

impulses. The cochlear hair cells are responsible for detecting sound over a wide range of frequencies- 

20Hz to 20,000Hz by converting sound waves into electrical impulses using stereocilia in a process called 

mechano-electrical transduction. The focus of this project was to develop and simulate a basic model of 

the mechano-electrical transduction process using a system of differential equations that model different 

parts of the mechano-electrical transduction system: a damped oscillator equation for the mechanical 

system and the cable equation for the initial stage of the propagation of the electrical signal.  The 

solutions of these equations appear to model the basic functionality of the cochlear hair cell stereocilium, 

as the application of a force due to a sound wave results in spatiotemporal depolarization along the 

stereocilium. 
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Introduction 

In the process of human audition, a crucial step is the conversion of longitudinal sound waves, 

which are picked up by the outer ear, to electrical impulses (Fig. 1A), that can be processed by the brain. 

The structure responsible for this mechano-electrical transduction (conversion of a mechanical stimulus to 

an electrical impulse) is the cochlea [2] (Fig. 1B). The cochlea is a curled, snail-like tube in the inner ear, 

which is comprised of a basilar membrane, surrounding fluid, the oval window, and the round window. 

The fluid in the cochlea, the oval window, and the round window all serve to control the movement of 

sound waves around the basilar membrane [1]. Vibration of the stapes in the inner ear causes the vibration 

of the oval window at the base of the cochlea [1]. Vibration of the oval window sends fluid ‘pulses’ 

through the cochlear fluid and around the basilar membrane. Pulses are absorbed by the round window, 

which is also at the base of the cochlea, opposite to the round window on the other side of the basilar 

membrane [1]. The part of the cochlea responsible for mechano-electrical transduction is the basilar 

membrane using hair cells. Hair cells on different portions of the basilar membrane are capable of sensing 

different frequencies of sound: 20 Hz- 20,000Hz [2]. Hair cells capable of sensing high frequencies of 

  (A)      (B) 

Figure 1: Components of the ear responsible for capturing and transferring sound waves to the 

cochlea (A) and locations of the cochlea that sense different sound wave frequencies (B).  
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Figure 3: Sound waves cause a force to be 

applied to the tip. When  stereocilia are bent, 

a mechanical conformational change is 

caused that leads to potassium movement into 

the hair cell [2].  

sound are located near the base of the cochlea, while hair cells near the apex sense low frequencies of 

sound (Fig. 1B). 

 Hair cells, the functional unit of the basilar membrane, have two main regions: 1) stereocilia and 

2) cell body [1] (Fig. 2). The stereocilia are actin cylinders projecting from the cell body into the cochlear 

fluid. Each hair cell has multiple stereocilia (20-100) that are arranged in by height in the direction of 

sound propagation [2]. The stereocilia are joined at the 

tips by cadherins called tip links [2].  The tip links are 

connected to potassium channels. When a sound wave 

passes through a portion of the cochlea, the pressure 

from the longitudinal sound waves causes the 

stereocilia to bend  [2] (Fig. 3). The stereocilial 

bending causes the tip links to stretch out. The tip link 

stretching pulls on the potassium channels located on 

the tip links and causes a mechanical conformation 

  (A)      (B) 

Figure 2: Anatomical (A) and functional (B) picture of  celial bundle.  
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change. This mechanical conformation change leads to potassium movement into the cell and 

depolarization of the stereocilial membrane [2]. The potassium current causes the opening of voltage 

gated calcium channels in the cell body. Depolarization in the cell body leads to neurotransmitter release 

onto an afferent nerve that carries the electrical impulse to the brain [1].  

The focus of this project was to develop a simple mathematical model of the mechano-electrical 

transduction observed at the top of the stereocilia, produce an analytical solution of the model, when 

possible, and numerically solve the model equations to produce model responses to simple stimuli. 

  

Methodology 

 There are three components to the model of mechano-electrical auditory transduction: 1) the 

motion of the tip link due to the bending of the stereocilia, which was modeled as a damped harmonic 

oscillator, 2) the influx of potassium ions into the stereocilium which was modeled as a binary static 

threshold function, and 3) the voltage change along the stereocilium that is caused by the initial potassium 

influx, which was modeled using the cable equation.  

I. The Spring Equation 

The equation modeling the motion of the tip link and stereocilium, when a sound wave applies a force 

and causes oscillation of the stereocilium, was constructed from the damped harmonic oscillator 

model of the tip-link/stereocilium system proposed 

by Fettiplace [2] (Fig. 4). In reaction to the 

application of a force (fB), the stereocilium 

behaves like an ideal spring with a spring constant 

KS. The cadherins forming the tip link also behave 

like an ideal spring, which is called the gating 

spring, with spring constant Kg, the myosin motor 
Figure 4: Diagram of stereocilium modeling as 

a damped harmonic oscillator from [2].  

 

b 

Kg 
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at the edges of the tip links exerts a constant force (M) in order to maintain tension in the tip links 

(prevent inelastic stretching of the tip links), and  the dampening coefficient of stereocilial oscillation 

due to the inherent stiffness of the stereocilium is represented by b. In the original model, the 

potassium channel is considered an active component in the tip link/ stereocilium harmonic oscillator 

model. In fact there have been several articles (e.g., [4, 5, 6]) published on gated spring theory, where 

the potassium channel has varying probabilities of being open or closed based on various 

environmental factors. In this project, for simplicity, the dynamic involvement of the potassium 

channel in the oscillator system was not considered. The potassium channel was assumed to be a 

passive component and the solution to the differential equation, without considering the potassium 

channel, dictated whether the channel was open or closed. Therefore, the model shown in Figure 4 is 

mathematically expressed by equation 1 below. The net force experienced by the stereocilium is equal 

to the stereocillial mass multiplied by the net stereocilliar acceleration (Newton’s 2
nd

 law). The 

solution of the dampened oscillator equation is the displacement (y) of the stereocilium from its 

equilibrium point, defined as the position when the stereocilium is collinear with the cell body.  

  ( )   
  

  
            

   

   
                   ( ) 

 

Since, initially (at t=0), the stereocilium has zero displacement and no velocity 

 ( )     
  

  
(   )                     ( ) 

Applying Laplace transform on equ.1, under the initial conditions expressed in eqs  2, we obtain: 

  ( )     ( )     ( )     ( )  
 

 
     ( )                  ( ) 

 

and solving eq. 3 for Y(s): 

 ( )   
 

(       (     ))
 (  ( )  

 

 
)               ( ) 
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where  

 ( )   
 

(       (     ))
                ( ) 

 

is the mechanical model’s transfer function, and  

𝑔( )  L  {
 

       (     )
}           (6) 

its impulse response. The term 

  ( )  
 

 
              ( ) 

constitutes the Laplace transform of a forcing function. Then, the displacement y(t) can be expressed in 

the form of a convolution integral as follows: 

 ( )  ∫ 𝑔( )  (   )   
 

 

 ∫ 𝑔( ) (   )   
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                 ( ) 

Where H(t) is the Heaviside function. For an input pulse of amplitude f0 and duration t0 starting at t=0 

expressed by:  

   ( )    [ ( )   (    )]                    ( ) 

the output is: 
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II. The Ion Channel 

In order for the potassium channel to open, a certain force must be applied by the tip link. In this 

project a static, binary behavior will be assumed, producing mechanical conformation change of the 

potassium channel that leads to the depolarization of the stereociliar membrane only if the stereocilium 

displacement is greater than a certain value           . For displacements greater than           , the tip 

links apply enough force on the potassium channels to drive them to an open state (probability of the 

channel being open is 1), allowing a potassium current I0 to enter the cell. For displacements less than 

          , the tip links do not apply enough force on the potassium channels to drive them to an open 

state (probability of the channel being open is 0). This model assumes that there are only two possible 

states for the potassium channel: one in which the channel is always open and one in which the channel is 

always closed and is mathematically represented as follows: 

 ( )  {

                   

                  
                  ( ) 

I(y) shows the current into the stereocilium that is caused by the influx of potassium ions. 

 

 

III. The Cable Equation 

If the displacement of the stereocilium is greater than           , then the resulting current (due to 

potassium influx) produces a voltage change along the length of the stereocilium that can be modeled by 

the cable equation as follows: 

 

  

   

   
   

  

  
 
(    )

  
  ( ) (    )            (  ) 

where V is the voltage across the stereocilium membrane, rl is the longitudinal resistance, and the Cm and 

rm the membrane capacitance and the membrane resistance respectively. Vr is the resting potential of the 

membrane and x is the spatial direction of the propagating voltage. The current injected into a single 
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spatial location x0 at the stereocilium is represented by the term  ( ) (    ), where δ(x) is the Dirac 

delta function.  ( )   ( ) represents the temporally varying current as it is shaped by equations (7) and 

(9). In this project, it is assumed that: (1) the resting membrane potential is zero, (2) the current is injected 

at  x0 = 0, (3) the flux at the boundaries (x=0 and x=L; L being the length of the stereocilial membrane) is 

zero, and (4) the membrane is at rest at time t=0. Thus: 

                     
  

  
(   )     

  

  
(   )                  (  ) 

                    (   )                   (  ) 

Using Green’s functions, the solution of equation (10) can be written as: 

 (   )   ∫∫ (  (       ) ( ) ( )]       
 

 

          (  )

 

 

 

Since the system is LTI, equation (13) becomes: 

 (   )   ∫∫ (  (       ) ( ) ( )]       
 

 

          

 

 

 

 ∫   (     ) ( )               (  )
 

 

 

where    (   )is Green’s function for the homogeneous part of equation (10) solved in the bounded 

interval [0,L].  Jackson [9] and Abbott [10] expressed   (   ) in terms of the infinite domain solution 

  (   )   of equation (10) as follows: 

   (   )   ∑  (       )

 

   

          (  ) 

where, 
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with H(t) being the Heaviside function,        and   √
  

  
 . 

 

Results 

The response of the aforementioned model of the auditory mechano-electrical transduction was 

computed analytically and numerically for two classes of inputs: (1) a pulse input and (2) a finite duration 

sinusoidal input. The figures that follow show the results of these computations, which were conducted 

using matlab. The associated matlab scripts are included in the Appendix . The value ranges for the 

constants used to find the responses of the model were based on the cited literature ([2], [3], [4], [5], [7]) 

and were as follows:    (the gate spring constant) in the order of      
 

 
 ,    (the stereocilia passive 

stiffness) in the order of      
 

 
 , b (the dampening constant) in the order of     

  

 
,  M (the myosin 

motor tension constant) in the order of        , m (the mass of the stereocilia) in the order of       𝑔,    

(the injected current) in the order of        ,    (the longitudinal resistance) in the order of          ,    

(the membrane capacitance) in the order of           ,    (the membrane resistance) in the order of 

           and L (the streocilium length) in the order of         According to their respective references, 

the values of the model parameters are approximate and were chosen so as to demonstrate the temporal 

bandpass nature of stereociliar sensing.  

First, an input pulse of amplitude 200.0 pN and duration of 40.0 ms was applied to the spring 

subsystem at time t=0 . The response (displacement-y) of the spring subsystem (represented by the spring 

equations (1) and (2)), obtained using ode23 is shown in figure 5A (blue trace) along with the output of the 

gating function that shapes the current injected into the stereocilium (red trace) – low (zero value) 
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Figure 5: Response of the spring subsystem (A) and the voltage propagation subsystem (cable equation) 

(B) to a pulse input applied to the spring subsystem. In (A), the blue trace represents the numerical 

solution of the spring equation using ode 23, while the red trace indicates the points in time at which the 

displacement of the stereocilium is greater than the displacement threshold, allowing the influx of 

current. In (B), the solution of the cable equation with a forcing function shaped by the red trace from 

(A) is shown. 
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corresponds to the injection  of no current while high corresponds to the injection of current. The 

displacement threshold value was set at 8 nm. As seen in the blue trace of figure 5A, the solution of the 

spring equation shows two sets of damped oscillations. The stereocilium first undergoes a short period of 

damped oscillation, when a force is initially applied. At 25 ms, the stereocilium reaches a steady state, at a 

constant displacement from the normal of about 7 nm. The constant displacement lasts until the pulse ends 

and there is no longer force being applied onto the stereocilium. At t = 40ms, the stereocilium undergoes a 

damped oscillation until it reaches steady state at 65ms.The stereocilium oscillates about the normal until it 

comes back to its initial, resting position. The potassium channels will only open if the displacement of the 

stereocilium is above a threshold level. In this case, the threshold displacement is 8 nm. As indicated by the 

red trace in figure 5A, there are two time points at which the displacement of the stereocilium exceeds the 

threshold level at: t~2ms and t~6ms. The red pulses indicate points in time at which the stereocilium will 

experience an influx of current. That is, the potassium gate is opened by the tip link and potassium flows 

into the cell. The incoming potassium current was modeled with a pulse of amplitude 250pA.  

The solution of the cable equation (10) subject to equations (11) and (12), and a forcing function 

shaped by the red trace in figure 5A, using pdepe, is shown in figure 5B. For each of the two time periods 

corresponding to the influx of current, the stereociliar membrane experiences spatiotemporal changes in 

membrane voltage. At t=0, the membrane begins at rest with voltage of 0.0 mV. Considering that x = 0 

indicates the location of the potassium channel, the most dramatic changes in membrane voltage are seen 

around the potassium channel, as the interior of the cell immediate to the channel should have the highest 

concentration of potassium ions. Any spatial change in membrane potential would be due to diffusion of 

potassium ions.  The first influx of potassium causes the membrane potential to rapidly increase. The 

increase in membrane potential is, then, propagated down the sterociliar bundle, gradually attenuating as 

the distance increases. This behavior is shown in figure 5B by the gradual attenuation of voltage as the 

depth of the first rise for a given point in time is the greatest at distance x = 0 and decreases as distance 

increases. Eventually, the membrane begins to repolarize at t = 10ms. Repolarization is indicated in the 

graph by the decrease in membrane potential as V returns to 0 over time.  Before the membrane has 

(A) 

(B) 
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completely repolarized, a second current 

pulse is delivered as the potassium channel 

opens again, exhibiting the same behavior as 

the first pulse. It should be noted that the 

voltage does not attenuate wit distance to  

0.0 V within the length of the stereocilium. 

This behavior is expected as the stereocilium 

should deliver some voltage value to the cell 

at the end of its length so that the sound be 

sensed.  

In order to more closely mimic the 

conditions experienced by stereocilia in a 

human ear, we modeled the forcing function 

of the spring subsystem  as a sinusoidal 

function, since sound is more likely to take 

on a continuous form such as this rather than 

a single burst of uniform amplitude. Thus, 

three finite duration (60 ms) sinusoidal 

inputs with amplitude 200pN and 

frequencies of 100Hz, 250Hz, and 375Hz 

were applied to the spring subsystem. The 

corresponding responses of the spring 

subsystem are shown in figures 6A, 6B, and 

6C respectively (blue traces). The red trace 

in each figure shows when the response  

(A) 

(B) 

(C) 

Figure 6: Numerically computed response of the spring 

subsystem to three sinusoidal inputs demonstrating the 

spring subsystem’s bandpass / frequency selectivity 

properties. For low (A) and high (C) frequencies the 

response is minimal, while for frequencies in the middle 

(B) the response is significant.  
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(stereocilium displacement) exceeds the threshold 

value and allows potassium to enter (current influx). 

A comparison among the three figures reveals the 

bandpass property of the spring subsystem. While in 

the region of mid frequencies (Fig. 6B) the response 

of the subsystem exceeds the threshold often during 

the duration of the sinusoid (many red pulses) and 

delivers significant amounts of current, in the region 

of low frequencies (Fig. 6A) and high frequencies 

(Fig. 6C) the subsystem’s response is mostly below 

threshold  (few red pulses) and little current is 

delivered. The solution of the cable equation along 

the sterocilium for each one of these cases is shown 

in figures 7A, 7B, and 7C respectively. Figure 7B 

shows the voltage reaching a value in the order of 

ten times higher than the voltage in figures 6A and 

6C. Thus, the stereocilium delivers to the cell higher 

voltage when the applied force due to oscillating 

sound wave is in the frequency range the 

stereocilium is mostly sensitive to and is designed to 

detect. 

Figures 5, 6, and 7 provide results that have 

been numerically obtained by solving equations 1 

and 10 using matlab’s  built in capability and custom 

scripts 

(A) 

(B) 

Figure7: Solution of the cable equation along the 

stereocilium for the three sinusoidal inputs shown in 

figure 6. When the stereocilium is sensitive to the 

frequency range of the applied force, it delivers higher 

voltage to the cell (B) rather when it is not (A,C) 

(C) 
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Figure 8: Graphs of the analytical solutions of equations 1(A-D)  and 10 (E-F) for each of the four input 

cases. Comparison with their numerically computed counterparts shown in figures 5, 6, and 7 suggests    

very good agreement. 

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

(G) 

(H) 
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included in the Appendix. However, analytical solutions were also obtained for the spring subsystem 

(equations 7 and 8) and for the cable equation (equations 13, 14, and 15). Graphs of the analytical 

solutions of the spring subsystem for each of the four input cases are shown in figure 8 (A-D) and graphs 

of the analytical solutions for the cable equation corresponding in each of these cases are shown in figure 

(E-H). Comparison between the analytically and the numerically computed solutions show a very good 

agreement. The impulse response of the spring subsystem and Green’s function for the cable equation are 

shown in figures 9A and 9B respectively. The shape of the impulse response of the spring system shown 

in figure 9A is indicative of the banpass nature of the spring subsystem. The shape of Green’s function for 

the cable equation depicted in figure 9B shows quick temporal decay but a slower spatial attenuation, 

indicating quick response of the stereocilial membrane to temporal changes and limited spatial attenuation 

over the length of the stereocilium so that at least a fraction of produced voltage can reach the cell body. 

 

 

 

 

 

 

  

(A) (B) 

Figure 9: Graphs of the analytical expressions for the impulse response of the spring subsystem (A) and 

Green’s function for the cable equation (B). The shape of the impulse response of the spring system (A) 

corroborates its banpass behavior. The quick temporal decay but the slower spatial attenuation of Green’s 

function (B) indicate quick response of the stereocilial membrane to temporal changes and limited spatial 

attenuation over the length of the stereocilium. 
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Discussion 

A simple model of the auditory mechano-electrical transduction was presented and its response to pulse 

and sinusoidal inputs was examined. The model constitutes an attempt to capture the functionality of a 

stereocilium as the force applied to it by sound waves causes a gate to open and allow potassium ions to 

enter, changing the voltage across the membrane and down the stereocilium up to the cell body of the hair 

cell the stereocilium is attached to. The mechanical portion of the stereocilium was modeled by a second 

order mass-spring-damper ODE, the gate was modeled by a simple static threshold function, and the 

propagation of the voltage down the stereocilium was modeled by the cable equation (PDE). The ODE 

and the PDE were solved analytically and numerically for two classes of inputs: a pulse and a finite 

duration sinusoid at three distinct frequencies. The values of the model parameters were selected from 

value ranges published in the literature.    

The results of the computations indicated that the basic behavior of the auditory mechano-

electrical transduction was captured, at least in principle, successfully by the model. They demonstrated 

the narrow frequency range specificity exhibited by stereocilia. The parameter values employed in the 

computations demonstrated the bandpass nature of the spring (mechanical) subsystem specific to the 

range between 200Hz and 300Hz. The results also demonstrated the fast temporal and the slow spatial 

dynamic of the voltage propagation mechanism down the stereoclium, suggesting the stereocilium’s 

adaptability to fast temporal changes in voltage without the introduction of significant spatial attenuation 

that would result in delivering small voltage values to the hair cell.  It should be noted that one key 

simplifying assumption was the non-dynamic representation of the potassium gating mechanism, 

although the literature reports complex dynamics governing the gating mechanism. Clearly, more 

extensive investigation is needed to determine the extent to and accuracy with which the model represents 

the auditory mechano-electrical transduction, but the fact that it does display its basic properties gives 

credence to the idea that a mathematically sound model was presented which successfully reproduces the 

basic biological dynamics of the auditory mechano-electrical transduction. 
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APPENDIX:  Matlab Script 

% Plot Spring System's Impulse Response  
% and Analytical Solutions  

  
b = 4e-2; 
K_s = 30e0; 
M = 20e-3; 
K_g = 6e-1; 
m = 1e-3; 
F0 = 200; 

  
syms t; 

  
fb1 = F0*(heaviside(t) - heaviside(t-0.4)); 
fb2 = F0*(heaviside(t) - heaviside(t-0.6))*sin(20*pi*t); 
fb3 = F0*(heaviside(t) - heaviside(t-0.6))*sin(50*pi*t); 
fb4 = F0*(heaviside(t) - heaviside(t-0.6))*sin(75*pi*t); 

  
FB1 = laplace(fb1) 
FB2 = laplace(fb2) 
FB3 = laplace(fb3) 
FB4 = laplace(fb4) 

  
syms s; 

  
 H = 1/(m*s^2+b*s+(K_s+K_g)); 

  
 h = ilaplace(H) 

  
 Y1 = H*(FB1-M/s); 
 Y2 = H*(FB2-M/s); 
 Y3 = H*(FB3-M/s); 
 Y4 = H*(FB4-M/s); 

  
 y1 = ilaplace(Y1); 
 y2 = ilaplace(Y2); 
 y3 = ilaplace(Y3); 
 y4 = ilaplace(Y4); 

  

  
figure(1) 
yh = subs(h,t,[0:.005:.3]); 
plot([0:.5:30],yh); 
Title('Spring System Analytical Impulse Response'); 
xlabel('Time (ms)'); 

  
figure(2) 
yy1 = subs(y1,t,[0:.005:1]); 
plot([0:.5:100],yy1); 
Title('Spring System - Analytical Response to Pulse Input'); 



Courelli & Courellis 

Appendix -ii 

 

xlabel('Time (ms)'); 
ylabel('Displacement (nm)'); 

  
figure(3) 
yy2 = subs(y2,t,[0:.005:1]); 
plot([0:.5:100],yy2); 
Title('Spring System - Analytical Response to Sine (100 Hz)Input'); 
xlabel('Time (ms)'); 
ylabel('Displacement (nm)'); 

  
figure(4) 
yy3 = subs(y3,t,[0:.005:1]); 
plot([0:.5:100],yy3); 
Title('Spring System - Analytical Response to Sine (250 Hz)Input'); 
xlabel('Time (ms)'); 
ylabel('Displacement (nm)'); 

  
figure(5) 
yy4 = subs(y4,t,[0:.005:1]); 
plot([0:.5:100],yy4); 
Title('Spring System - Analytical Response to Sine (375 Hz)Input'); 
xlabel('Time (ms)'); 
ylabel('Displacement (nm)'); 

 

 

 

% Plot Cable Equation's Analytical Solutions  

  
global lambda ;  
global tau ;  
global ffun; 
global xmesh; 
global tmesh; 
global el; 

  
rlong = 1e7;  
rmem = 8e10;  
cmem = 5e-10; 
I0 = 250e-12; 
ffunp = load('ffunsavpulse'); 

  
dx=1; 
dt=0.1; 
x_min = 0; 
x_max = 40; 
t_max = 100; 

  
lambda = sqrt(rmem/rlong); 
tau = cmem*rmem; 
xmesh = x_min:dx:x_max; 
tmesh = dt:dt:t_max; 
el = x_max; 

  
Green = Green_fnt(1); 
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figure; 
surf(xmesh,tmesh(1:10:end),Green(:,1:10:end)') 
Title('Green`s Function of the Cable Equation'); 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 

  
ffunp = ffunp.* (rlong*I0/max(ffunp)); 

  
ffun = resample(ffunp,length(tmesh), length(ffunp), 0);  

  
V = zeros(length(xmesh), length(tmesh)+length(ffun)-1); 
for ix=1:1:length(xmesh); 
    V(ix,:)=(1e6)*dx*dt*conv(Green(ix,:), ffun, 'full')/tau/lambda; 
end 

  
figure; 
surf(xmesh,tmesh(1:2:end/4),V(:,1:2:length(tmesh)/4)') 
Title('Cable Equation Analytical Response: Pulse Input in Spring System'); 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 

  

  
ffuns100 = load('ffunsavs100'); 

  
ffuns100 = ffuns100.* (rlong*I0/max(ffuns100)); 

  
ffun = resample(ffuns100,length(tmesh), length(ffuns100), 0);  

  
V = zeros(length(xmesh), length(tmesh)+length(ffun)-1); 
for ix=1:1:length(xmesh); 
    V(ix,:)=(1e6)*dx*dt*conv(Green(ix,:), ffun, 'full')/tau/lambda; 
end 

  
figure; 
surf(xmesh,tmesh(1:2:end/4),V(:,1:2:length(tmesh)/4)') 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 
Title('Cable Equation Analytical Response: Sine(100Hz) Input in Spring 

System'); 

   
ffuns250 = load('ffunsavs250'); 

  
ffuns250 = ffuns250.* (rlong*I0/max(ffuns250)); 

  
ffun = resample(ffuns250,length(tmesh), length(ffuns250), 0);  

  
V = zeros(length(xmesh), length(tmesh)+length(ffun)-1); 
for ix=1:1:length(xmesh); 
    V(ix,:)=(1e6)*dx*dt*conv(Green(ix,:), ffun, 'full')/tau/lambda; 
end 
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figure; 
surf(xmesh,tmesh,V(:,1:1:length(tmesh))') 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 
Title('Cable Equation Analytical Response: Sine(250Hz) Input in Spring 

System'); 

   
ffuns375 = load('ffunsavs375'); 

  
ffuns375 = ffuns375.* (rlong*I0/max(ffuns375)); 

  
ffun = resample(ffuns375,length(tmesh), length(ffuns375), 0);  

  
V = zeros(length(xmesh), length(tmesh)+length(ffun)-1); 
for ix=1:1:length(xmesh); 
    V(ix,:)=(1e6)*dx*dt*conv(Green(ix,:), ffun, 'full')/tau/lambda; 
end 

  
figure; 
surf(xmesh,tmesh,V(:,1:1:length(tmesh))') 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 
Title('Cable Equation Analytical Response: Sine(375Hz) Input in Spring 

System'); 
  

 
% Numerical Solution to Spring Equation using ode23 

  
t0 = 0; 
tf = 1; 
x0 = [0 0]'; 
[t,xvar] = ode23('Mech_Spring_fun',t0:tf,x0); 
z = I_y(xvar(:,1)); 
save('ffunsavpulse', 'z', '-ascii'); 
plot(100*t,xvar(:,1)) 
hold on 
plot(100*t,z, 'r') 
Title('Spring System - ODE23 Response to Pulse Input'); 
xlabel('Time (ms)'); 
ylabel('Displacement (nm)'); 
hold off 

 

 
function [Fout] = Mech_Spring_fun(t,x) 
%SPRING_FUN Summary of this function goes here 
%   Detailed explanation goes here 

  
b = 4e-2; 
K_s = 30e0; 
M = 20e-3; 
K_g = 6e-1; 
m = 1e-3; 
F0 = 200; 



Courelli & Courellis 

Appendix -v 

 

  
Fout = [x(2); (-1/m)*(K_g + K_s)*x(1)-b/m*x(2)+F0*(heaviside(t)-heaviside(t-

0.6))/m - M/m]; 

  
end 

  

  
% Solution of the Cable Equation Using PDEPE 
global rlong ;  
global rmem ;  
global cmem 
global Vrest; 
global Lcel; 
global ffun; 
global dt; 
global dx; 
global t_max; 

  
dx=1; 
dt=0.1; 
x_min = 0; 
x_max = 40; 
t_max = 100; 
I0 = 250e-12; 

  
rlong = 1e7;  
rmem = 8e10;  
cmem = 5e-10;  
Vrest = 0; 
Lcel = x_max; 
xmesh = x_min:dx:x_max; 
tspan = 0:dt:t_max-dt; 

options = odeset(‘InitialStep’, 0.1, ‘MaxStep’, 0.1); 

  

  
ffuntmp = load('ffunsavpulse'); 
ffuntmp = ffuntmp .*(I0/max(ffuntmp)); 
ffun = resample(ffuntmp,length(tspan), length(ffuntmp), 0);  

  
m=0; 
sol=pdepe(m,@cablepdefun,@cablepdeic,@cablepdebc,xmesh,tspan,options); 
u= 100*sol(:,:,1); 

  
figure; 
surf(xmesh,tspan(1:2:end/4),u(1:2:length(tspan)/4,:)) 
Title('Cable Equation PDEPE Response: Pulse Input in Spring System'); 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 

  

  
ffuntmp = load('ffunsavs100'); 
ffuntmp = ffuntmp .*(I0/max(ffuntmp)); 
ffun = resample(ffuntmp,length(tspan), length(ffuntmp), 0);  
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m=0; 
sol=pdepe(m,@cablepdefun,@cablepdeic,@cablepdebc,xmesh,tspan,options); 
u= 100*sol(:,:,1); 

  
figure; 
surf(xmesh,tspan(1:2:end/4),u(1:2:length(tspan)/4,:)) 
Title('Cable Equation PDEPE Response: Sine(100Hz) Input in Spring System'); 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 

  
ffuntmp = load('ffunsavs250'); 
ffuntmp = ffuntmp .*(I0/max(ffuntmp)); 
ffun = resample(ffuntmp,length(tspan), length(ffuntmp), 0);  

  
m=0; 
sol=pdepe(m,@cablepdefun,@cablepdeic,@cablepdebc,xmesh,tspan,options); 
u= 100*sol(:,:,1); 

  
figure; 
surf(xmesh,tspan,u) 
Title('Cable Equation PDEPE Response: Sine(250Hz) Input in Spring System'); 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 

  
ffuntmp = load('ffunsavs375'); 
ffuntmp = ffuntmp .*(I0/max(ffuntmp)); 
ffun = resample(ffuntmp,length(tspan), length(ffuntmp), 0);  

  
m=0; 
sol=pdepe(m,@cablepdefun,@cablepdeic,@cablepdebc,xmesh,tspan,options); 
u= 100*sol(:,:,1); 

  
figure; 
surf(xmesh,tspan,u) 
Title('Cable Equation PDEPE Response: Sine(375Hz) Input in Spring System'); 
ylabel('Time (ms)'); 
xlabel('Displacement (um)'); 
zlabel('V(x,t) (uV)'); 

 
function [ c,f,s ] = cablepdefun( x,t,v,DvDx ) 
global rlong ;  
global rmem ;  
global cmem ;  
global dt; 
global dx; 
global ffun; 

  
   if x == 0.5*dx 
      z = ffun(floor((t+dt)/dt)); 
   else 
       z=0; 
   end 
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c=cmem; 
f=(1/rlong)*DvDx; 
s= -v/rmem + z; 
return 
end 

  

 

 
function [ pl, ql,pr,qr ] = cablepdebc( xl,ul,xr,ur,t ) 
global rlong ;  
global rmem ;  
global cmem ;  
global Vrest; 
global Lcel; 
pl=0; 
ql=rlong; 
pr=0; 
qr=rlong; 
return 
end 

 

 

 

function [ V0 ] = cablepdeic( x ) 
global rlong ;  
global rmem ;  
global cmem ;  
global Vrest; 
global Lcel; 

  
V0=Vrest; 
end 

  

 

 

  

 

 

 

 

 


